

Tuesday 8/27	Tuesday 8/27 Today's Topic: Algebraic Methods for finding Limits			
In-class examples:	In-class examples:			
Ex. 1 Evaluate $\lim_{x\to 2} (4x^2 + 3)$ using limit laws.				
Ex. 2 Evaluate $\lim_{x\to 0} (\cos \theta)$	(x-4) using direction	ct substitution.		
Ex. 3 Evaluate the foll	lowing limits:			
a) $\lim_{x \to 0} \frac{x^2 - 3x}{x+1}$	$\frac{+2}{l}$ b)	$\lim_{x\to\pi}x\cos x$	c) $\lim_{x \to 2} \frac{x^2 - 4}{x + 2}$	d) $\lim_{x\to 3} \frac{x+6}{x-3}$
Ex. 4 For $f(x) = \begin{cases} \frac{1}{2}x \\ \frac{1}{3}x \\ 3 - x \end{cases}$	$x + 1, x \le 2$, evaluat x, x > 2	te $\lim_{x\to 2} f(x)$.		
Ex. 5 For $f(x) = \begin{cases} x^2 \\ 0 \\ 8 - \end{cases}$	-5, $x < -3$ x = -3, evalue x = -3, evalue	uate $\lim_{x\to -3} f(x)$.		
AP Multiple Choice				
If $f(x) = \begin{cases} \ln x & \text{fo} \\ x^2 \ln 2 & \text{fo} \end{cases}$ (A) $\ln 2$ (4)	or $0 < x \le 2$ or $2 < x \le 4$, then (B) ln 8	$\lim_{x \to 2} f(x) \text{ is}$ (C) ln 16	(D) 4	(E) nonexistent
Homework: Worksheet 9				

Wednesday 8/28	Today's Topic: Algebraic Methods for Finding Limits; Indeterminate Forms
In-class examples:	
Ex.1 Evaluate the f	ollowing limits:
a) $\lim_{x\to a}$	b) $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$
c) $\lim_{x\to \infty}$	$\lim_{x \to 0} \frac{x-3}{\sqrt{x+1}-2}$ d) $\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$
AP Multiple Choice:	
$\lim_{x \to 2} \frac{x^2 + x - x}{x^2 - 4}$	$\frac{6}{10}$ is
(A) $-\frac{1}{4}$ (I	B) 0 (C) 1 (D) $\frac{5}{4}$ (E) nonexistent
Homework: Workshe	et 10

Thursday 8/29	Today's Topic: Li	mits involving the Dif	ference Quotient; T	he Squeeze Theorem
Warm-Up: Evaluate	$\frac{f(x+h) - f(x)}{h} \text{for}$	a) $f(x) = 4x - 1$	b) $f(x) = x^2 - 2x^2$	<i>x</i> + 1
In-class examples:				
Ex. 1 Evaluate $\lim_{\Delta x \to 0} \frac{f}{f}$	$\frac{(x+\Delta x)-f(x)}{\Delta x} \text{for}$	a) $f(x) = 3x + 2$	b) $f(x) = x^2 + 4$	4x + 5
The Squeeze Theorer	n			
Fy 2 If $-3\cos(\pi r) <$	$f(r) \leq r^3 \pm 2$ and	$luoto \lim_{x \to 0} f(x)$ Institu	w wour answer	
EX. 2 II $-3\cos(\pi x) \le$	$J(x) \leq x + 2$, eval	$\lim_{x \to 1} f(x) \cdot Justif$	y your answer.	
AP Multiple Choice				
If $a \neq 0$, then $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$ is				
(A) $\frac{1}{a^2}$	(B) $\frac{1}{2a^2}$	(C) $\frac{1}{6a^2}$	(D) 0	(E) nonexistent
Homework: Workshe	et 11			

Friday 8/30	Today's Topic : Limits at Infinity (Principle of Dominance); End Behavior; Definition of a Horizontal Asymptote.			
In-class examples				
Ex. 1 Find the limit: $\lim_{x \to \infty} \frac{2x-1}{x+1}$		Ex. 2 Find the limit: $\lim_{x \to \infty} \left(5 - \frac{2}{x^2} \right)$		
Ex. 3 Find the limit: \int_{x}	$\lim_{x \to \infty} \frac{3x^3 + 2x^2 - 5}{3x^2 - 4x + 1}$	Ex. 4 Find the limit: $\lim_{x \to \infty} \frac{\sin x}{3x^2 + 1}$		
Ex. 5 Find the limit:	$\lim_{x\to\infty}\frac{e^x}{3x^{20}+1}$	Ex. 6 Find the limit: $\lim_{x \to \infty} \frac{3x-2}{\sqrt{2x^2+1}}$		
Ex. 7 Find the limit: \int_{x}	$\lim_{x \to \infty} \frac{\ln x}{e^x}$	Ex. 8 Find the limit: $\lim_{x \to \infty} x \cos \frac{1}{x}$		
AP Multiple Choice	AP Multiple Choice			
$\lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3}$	is			
(A) $\frac{1}{3}$ (B) $\frac{3}{4}$	(C) $\frac{3}{2}$ (D) $\frac{9}{4}$	(E) infinite		
Homework: Worksheet 12				

Tuesday 9/3	Today's Topic: 3 Part Definition of Continuity		
In-class examples:			
Ex. 1 Show that $f(x)$:	$= x^{2} + 3x + 2$ is continuous at $x = 1$ using the 3-part definition of continuity.		
Ex. 2 Determine if $f($	Ex. 2 Determine if $f(x) = \frac{1}{x-2}$ is continuous at $x = 2$ using the 3-part definition of continuity.		
Ex. 3 For $f(x) = \begin{cases} \sqrt{x} \\ 5 \\ - \end{cases}$	$\overline{f(x)}$, $0 \le x \le 3$ x, $3 < x \le 5$, determine if $f(x)$ is continuous at $x=3$.		
AP Multiple Choice			
Let f be the function given by $f(x) = \frac{(x-2)^2(x+3)}{(x-2)(x+1)}$. For which of the following values of x is f not			
continuous?			
(A) -3 and -1 only	(A) -3 and -1 only		
(B) −3, −1, and 2	(B) -3 , -1 , and 2		
(C) -1 only	(C) -1 only		
(D) -1 and 2 only			
(E) 2 only			
Homework: Worksheet 13			

Thursday 9/5Today's Topic: Continuity; Infinite Discontinuities

In-class Examples:

Ex.1 Sketch the graph of any function f such that, $\lim_{x\to 2^-} f(x) = \infty$ and $\lim_{x\to 2^+} f(x) = -\infty$.

Ex. 2

Recall Example 2 from Yesterday:

f) Identify any vertical asymptotes on the graph of f(x). Use limits to describe the behavior of f(x) on the left and right of the vertical asymptote.

Ex. 3 Recall Example 3 from Yesterday:

f) Identify any vertical asymptotes on the graph of f(x). Use limits to describe the behavior of f(x) on the left and right of the vertical asymptote.

AP Multiple Choice

The vertical line x = 2 is an asymptote for the graph of the function *f*. Which of the following statements must be false?

- (A) $\lim_{x \to 2} f(x) = 0$
- (B) $\lim_{x \to 2} f(x) = -\infty$
- (C) $\lim_{x \to 2} f(x) = \infty$
- (D) $\lim_{x \to \infty} f(x) = 2$
- (E) $\lim_{x \to \infty} f(x) = \infty$

The function f is given by $f(x) = \frac{ax^2 + 12}{x^2 + b}$. The figure above shows a portion of the graph of f. Which of the following could be the values of the constants a and b?

- (A) a = -3, b = 2
- (B) a = 2, b = -3
- (C) a = 2, b = -2
- (D) a = 3, b = -4
- (E) a = 3, b = 4

Homework: Worksheet 15

Friday 9/6	Today's Topic: Limits Quiz #1	
In-class examples: None		
Homework: None		

Monday 9/9 Today's Topic: Continuity; Jump Discontinuities; Review **In-class examples:** 1) Sketch the graph of any function f such that, $f(3) = \lim_{x \to 3^+} f(x) = 1$ and $\lim_{x \to 3^-} f(x) = 0$. 2) Determine whether *f* is continuous at *c*: $f(x) = \begin{cases} x^2 & x < 1 \\ 3x + 2 & x \ge 1 \end{cases}$, c = 1. Determine the numbers at which the following function is continuous: $f(x) = \begin{cases} x^2 & \text{if } x \le 0\\ x+1 & \text{if } 0 < x < 2\\ 5-x & \text{if } 2 \le x \le 5 \end{cases}$ 3) **AP Multiple Choice** $f(x) = \begin{cases} x^2 - 3x + 9 & \text{for } x \le 2\\ kx + 1 & \text{for } x > 2 \end{cases}$ The function f is defined above. For what value of k, if any, is f continuous at x = 2? (A) 1 (B) 2 (C) 3 (D) 7 (E) No value of k will make f continuous at x = 2. Homework: Worksheet 16

Tuesday 9/10	Today's Topic: Intermediate Value Theorem	
In-Class Examples		
Ex. 1 Use the Interme	ediate Value Theorem to show that the polynomial function $f(x) = x^3 + 2x - 1$ has a zero in the	
interval [0,1]		
Ex. 2 If $f(x) = x^2 + 1$	$10\sin x$, show that there is a number c such that $f(c) = 800$ in $[0,30]$.	
AP Multiple Choice		
Let f be a function following is guara	a that is continuous on the closed interval [2, 4] with $f(2) = 10$ and $f(4) = 20$. Which of the interval by the Intermediate Value Theorem?	
(A) $f(x) = 13$ has at least one solution in the open interval (2, 4).		
(B) $f(3) = 15$		
(C) f attains a maximum on the open interval $(2, 4)$.		
(D) $f'(x) = 5$ has at least one solution in the open interval (2, 4).		
(E) $f'(x) > 0$ for	all x in the open interval $(2, 4)$.	

Homework: Worksheet 17

Wednesday 9/11 Tod	Vednesday 9/11 Today's Topic: Special Trig Limits			
In-class examples:				
Ex. 1 Use a graphing calcul	Ex. 1 Use a graphing calculator to determine: $\lim_{x \to 0} \frac{\sin x}{x}$ Ex. 2 $\lim_{x \to 0} \frac{\sin 3x}{x}$			
Ex. 3 Use a graphing calcul	Ex. 3 Use a graphing calculator to determine: $\lim_{x \to 0} \frac{1 - \cos x}{x}$ Ex. 4 $\lim_{x \to 0} \frac{1 - \cos 7x}{x}$			
Homework: Find each limi	t:			
1. $\lim_{x \to 0} \frac{\sin \frac{1}{2}x}{x}$	2. $\lim_{x \to 0} x \sec x$	3. $\lim_{x \to 0} \frac{\sin x}{2x}$	$4. \lim_{x \to 0} \frac{3\sin x}{x}$	
5. $\lim_{x \to 0} \frac{\sin 3x}{5x}$	$6. \lim_{x \to 0} \frac{\sin^2 2x}{3x^2}$	7. $\lim_{x \to 0} \frac{\tan x}{x}$	$8. \lim_{x \to 0} \frac{1 - \cos(2x)}{2x}$	
9. $\lim_{x \to 0} \frac{x+2}{\cos x}$	10. $\lim_{x \to \frac{\pi}{4}} \tan x$	11. $\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x}$	12. $\lim_{x \to 0} \frac{3x}{\sin x}$	
		(Hint: Use an identity)		

Friday 9/13	Today's Topic: Unit 2 Test - Limits/Continuity – Good Luck!!		
- Good luck on today's exam			
Homework: None			